Iterative Learning Control based on Stochastic Approximation
نویسندگان
چکیده
منابع مشابه
Iterative Learning Control based on Stochastic Approximation ⋆
In this paper stochastic approximation theory is used to produce Iterative Learning Control (ILC) algorithms which are less sensitive to stochastic disturbances, a typical problem for the learning process of standard ILC algorithms. Two algorithms are developed, one to obtain zero mean controlled error and one to minimise the mean 2-norm of the controlled error. The former requires a certain kn...
متن کاملStochastic Point-to-point Iterative Learning Control Based on Stochastic Approximation
An iterative learning control algorithm with iteration decreasing gain is proposed for stochastic point-to-point tracking systems. The almost sure convergence and asymptotic properties of the proposed recursive algorithm are strictly proved. The selection of learning gain matrix is given. An illustrative example shows the effectiveness and asymptotic trajectory properties of the proposed approach.
متن کاملSurvey on stochastic iterative learning control
Iterative learning control (ILC) is suitable for systems that are able to repeatedly complete several tasks over a fixed time interval. Since it was first proposed, ILC has been further developed through extensive efforts. However, there are few related results on systems with stochastic signals, where by stochastic signal we mean one that is described by a random variable. Stochastic iterative...
متن کاملIterative learning control based on extremum seeking
This paper proposes a non-model based approach to iterative learning control (ILC) via extremumseeking. Single-input–single-output discrete-time nonlinear systems are considered, where the objective is to recursively construct an input such that the corresponding system output tracks a prescribed reference trajectory as closely as possible on finite horizon. The problem is formulated in terms o...
متن کاملDeep Learning Approximation for Stochastic Control Problems
Many real world stochastic control problems suffer from the “curse of dimensionality”. To overcome this difficulty, we develop a deep learning approach that directly solves high-dimensional stochastic control problems based on Monte-Carlo sampling. We approximate the time-dependent controls as feedforward neural networks and stack these networks together through model dynamics. The objective fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2008
ISSN: 1474-6670
DOI: 10.3182/20080706-5-kr-1001.00253